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ANALYSIS OF A VARIABLE TIME-STEP DISCRETIZATION 
OF THE THREE-DIMENSIONAL FREIMOND MODEL 

FOR SHAPE MEMORY ALLOYS 

ULISSE STEFANELLI 

ABSTRACT. This paper deals with a semi-implicit time discretization with vari- 
able step of a three-dimensional Fremond model for shape memory alloys. 
Global existence and uniqueness of a solution is discussed. Moreover, an a 
priori estimate for the discretization error is recovered. The latter depends 
solely on data, imposes no constraints between consecutive time steps, and 
shows an optimal order of convergence when referred to a simplified model. 

1. INTRODUCTION 

This paper is concerned with the following system of partial differential equations 
in terms of the unknown functions 0, X1, X2, and u: 

(1.1) Ot(cod - LX1) + at((a(d) - da'(d))X2divu) - hA3 = F, 

(1.2) div(-vA(divu)J+AdivuJ+ 2(u) + a()X2J) + G = 0, 

(1.3) kte + (•dV) + I 
C(X, X2) ( 

X2 \) a(?) div u) 

a.e. in Q:= Q x (0, T), where Q is a bounded open subset of IR3 with smooth 
boundary 0Q and T > 0 stands for some final time. In addition, co, L, h, A, /P, 
k, ?, and d* are positive parameters, J is the identity matrix in 1R3, and v is a 
nonnegative constant. Here, e denotes the tensor 

(1.4) ei(u) = i+ for i,j = 1, 2, 3, 2 axj a84 

while O~c stands for the subdifferential of the indicator function of a nonempty, 
bounded, convex and closed subset K: of 1R2, and ~ : R -- IR, F : Q -- +R, 
G : Q -+ R•3 are given functions with some properties to be specified later. 

The nonlinear system (1.1)-(1.3) is concerned with the behavior of shape memory 
alloys subject to thermo-mechanical treatments. These materials are metallic alloys 
which could be permanently deformed (avoiding fractures) and consequently be 
forced to recover the original shape just by thermal means. 
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In the microscopic scale, this phenomenon is interpreted as the effect of a struc- 
tural phase transition between different configurations of the metallic lattices, 
namely the austenite and its shared counterparts termed martensites (see, e.g., 
[1]). Various models have been proposed to describe this behavior from the macro- 
scopic point of view (see [16]). If we assume the phases to coexist at each point 
of the shape memory sample and suppose that just two martensitic variants are 
present besides one austenite (in the three-dimensional space, up to 24 martensitic 
variants have been detected), indeed we may deal with the approach proposed by 
Fremond [7, 8, 11, 10]. In this context, 0 has to be regarded as the absolute tem- 
perature of the shape memory body while u accounts for its actual displacement 
and E stands for the (linearized) strain tensor. Besides, a(10) represents the ther- 
mal expansion of the system, and thus it vanishes at high temperatures (cf., e.g., 
[6, 10]). In our analysis a is also required to fulfill some compatibility conditions 
complying with the physical setting (see [6, 10]). Regarding the phases, let 01, 02, 
and 33 be the volumetric proportions of the two martensitic variants and of the 
austenite, respectively. These quantities obviously fulfill the conditions 

(1.5) 01 + 02 + 3 = 1, 0 <i 3• 
1 for i = 1, 2, 3. 

When we define the variables X1 and X2 as 

X1 := 01 + 
32, X2 :- 3 1 - 12, 

relation (1.5) implies that 

(1.6) [X1,X2] 
E 

K:={ [Vi, Y2] L2 such that ly2% 1 <1}. 
From the constitutive laws coupled with the second principle of thermodynamics 
and the universal conservation laws for momentum and energy, one deduces the 
system (1.1)-(1.3). Note that equation (1.2) is considered in a quasi-stationary 
form, that is, the inertial term utt is omitted. Indeed, let us stress that the latter 
small deformations approximation of the momentum balance equation is a rather 
standard approach [3, 5, 6, 7, 8, 12, 19]. Moreover, note that the existence of a 
solution to the three-dimensional problem with full momentum and nonlinearities 
is still an open and extremely challenging question (the reader is referred to [4], 
where the full momentum equation is considered along with a linearized energy 
balance equation). 

On the other hand, we stress that the energy balance equation of the full Fremond 
model [5] turns out to be 

(1.7) 
Ot (cod - LX1) + ot((a(d) - da'(O))x2divu) - hAV = F + a(d)X2 Ot (divu), 

while, in our framework, the nonlinearity in the right hand side of the previous 
equation is neglected. This simplification of the model has a technical motivation 
and seems mandatory in order to perform some error analysis. Indeed, from the 
analytical point of view, the choice of considering (1.1) instead of (1.7) is strictly 
connected with the crucial possibility of establishing an error estimate global in 
time, i.e., up to any reference time T. As regards the physical viewpoint, it is well 
known that the quantity lallLhO(R) turns out to be very small with respect to the 
other data whenever a real alloy is taken into account [6]. In this connection, a 
reasonable simplification of the model would be that of completely linearizing the 
energy balance equation (1.7). The latter was exactly the original approach to the 
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model proposed and investigated in the paper [6], and we may find in the literature 
some contributions dealing just with some of the nonlinearities of (1.7) ([7, 12]). On 
the other hand, we shall remark that the model (1.1)-(1.3) is still suitable completely 
describing the effect of the phase transition on the energy balance equation, and 
that our simplification consists in neglecting part of the mechanically induced heat 
sources. 

Finally, let us refer the reader to [6] for the physical meaning of the constants 
co, L, h, v, A, p, k, ?, and 0*. 

The system (1.1)-(1.3) has to be supplied with suitable initial and boundary 
conditions. We prescribe 

(1.8) 7(1, 0) = 

1,, 
X(, 0) = Xi,o, X2i(', 0) = 

X2,0. 

Denoting by 0n the outward derivative to the boundary 09Q and letting {Fo, }FA 
be a partition of d0Q into measurable subsets with positive surface measures, we 
choose 

(1.9) hO, + r~( - f) = 0 on OQ x (0, T), 

(1.10) u = 0 on To x (0,T), 

(1.11) ((-vA(divu) + Adivu + a(P)X2)J + 2ptE(u))n 
= g on T x (0, T), 

(1.12) , (div u) = 0 on 0Q x (0, T). 

Here rl denotes a positive parameter while f : 09Q x (0, T) -- R, g : F x (0, T) -* 

I•3 account for the interaction with the medium surrounding the domain. 
Existence of solutions to various problems concerning systems close to (1.1)-(1.3) 

is well known (see [5] for a review). Nevertheless, to our knowledge, an existence 
result for (1.1)-(1.3) was not yet investigated. In this concern, this paper provides 
the global existence and the uniqueness of a solution. Note that the question of 
whether or not the full problem (thus keeping (1.7) instead of (1.1)) has a unique 
solution has already been positively solved in the paper [3]. 

On account of the present literature on this model, we notice that the existence 
of solutions to systems related to the Fremond model rely often on a suitable time- 
discretization - a priori estimates - passage to the limit procedure. In this direction, 
the main novelty of the present contribution is that of proving an optimal order 
a priori estimate of the discretization error of (a variable step version of) such an 
approximation. This estimate depends solely on data. In particular, the latter 
estimate is independent of the regularity of the continuous solution. Moreover, no 
constraints between consecutive time steps are imposed throughout the analysis of 
the approximation. 

As regards the error analysis of the nonlinear inclusion (1.3) we shall remark 
that our technique is not new. Indeed, our argument relies on a careful application 
of the abstract analysis devised and fully detailed in [13, 14]. 

Let us point out that a parallel investigation of the discretization error for the 
one-dimensional Fr6mond model for shape memory alloys is carried out in [19]. In 
the latter paper we prove an optimal order error estimate for the one-dimensional 
version of the full model (1.2)-(1.3), (1.7), thus retaining all the nonlinearities in 
the energy balance equation. We shall stress that the error analysis of the one- 
dimensional case is entirely different from the present one and relies deeply on 
the 1-D structure of the problem. In particular, we make a crucial use of the 
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possibility of rewriting an equivalent formulation of the problem which turns out 
to be completely independent of u,. 

This is the plan of the paper. In Section 2 we give a variational formulation of 
the continuous problem (1.1)-(1.3), (1.8)-(1.12). Section 3 contains the approxi- 
mation and the statement of our main results. The existence of a solution to the 
system (1.1)-(1.3) is proved in Section 4, while Section 5 is devoted to deducing its 
uniqueness. Finally, Section 6 gives the proof of the error estimate. 

2. CONTINUOUS PROBLEM 

We start by fixing some notations. Let (., -) and I1 -1 denote the scalar product 
and the norm in L22(Q), respectively, while [., 

.] 
stands for the general pair. We 

introduce the following Hilbert space: 

V:= {v e (H1(Q))3, such that v = 0 on F0o, divv E H'(), 

endowed with the norm 

(2.1) I v . 1/2iE 

We also set, for any u, v V, 

(2.2) 
S/? 3 

a(u,v) := ( vV(divu) . V(divv) + Adivu divv + 2p Eij(U)ij(v) , i,j=1 

where E stands for the strain tensor specified in (1.4). It is well known (see, e.g., 
[9, p. 110]) that there exists a positive constant cv depending on A, p and Q such 
that 

(2.3) a(v,v) cvllvll Vv E V. 
Moreover, it is not difficult to verify that 

(2.4) a(v, v) ? vllV(divv)llL2 (Q))3 + (A + 2M/3) II divv2 Vv E V. 

Since the special triangular form of IC specified by relation (1.6) is not needed for 
our analysis, let KI be an arbitrary nonempty, bounded, convex, and closed subset 
of RR2, and define the (convex and closed) set 

(2.5) K := {[IY1, '2] E (L2(Q))2, such that [yI,Y2] 2E a.e. in Q}. 
It is now straightforward to fix a positive constant cK: such that 

(2.6) (1y(x)I2 + Vy2(x) 2) /2 c/C V[-l,2] E K, for a.e. x E 2. 
We assume that the data fulfill 

(2.7) F EL2(Q) 
(2.8) fE Wi,1(0, T; L2 (a)) 

(2.9) GE H1(0, T; (L2(Q))3), 

(2.10) gE H1(0, T; (L2(r3))3), 

(2.11) Eo E HI(Q), [XI,o, X2,o] E K, 
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and ask a to be a smooth function, vanishing in the interval (7c, +oo), where 
idc > 0 stands for the so-called Curie temperature. Moreover, we require that 

(2.12) a E C2(IR) and the set { E R : a'(() $ 0} is contained in [0, Vc], 

and 

(2.13) coe:= la" llLO(R) is sufficiently small. 

The previous condition will be made precise in the sequel (see (2.25)-(2.26)) and is 
satisfied by physically realistic data. 

We stress that (2.12) ensures the validity of the inequalities 

(2.14) Ia'() l, jIa"()l cc, ila(()|, i•6'(?)I < 2c_ V E R, 
where c, is defined as above. 

Remark 2.1. We note that some properties of a such as monotonicity (in the sense 
that a is a decreasing function) and positiveness, although physically motivated 
(see [8]), are not used in our analysis. 

For the sake of convenience and owing to (2.3), (2.9)-(2.12) and to the Lax- 
Milgram lemma, we introduce the initial displacement uo e V defined as the 
unique solution of the variational equality corresponding to the initial values, 
namely 

(2.15) 

a(uo, v) + (a(to)X2,0, divv) = jG(.,0) v dx + frg(., 0) .vdf Vv V. 
Jo Jra 

Thus, a precise formulation of problem (1.1)-(1.3), (1.8)-(1.12) is the following. 

Problem (P). Find d- E H1(0,T;L2(Q))n L"(0, T;H1(Q)), u E H1(0, T;V), 
X1,X2 E H1(O,T;L2(Q)) such that 

(2.16) divu C(Q), 

and the following equations and conditions hold: 

(2.17) 
[Xy(', 

t), X2(', t)] E K, Vt E [0, T], 

(&t(co0 
- 

LX1), o) + 
(dt((a(t0) 

- 
'9a'(C))x2divu), p) 

+h Vd - Vp dz +r (d9- f ) pd = (F, p) 

(2.18) Vop E H1 (Q), a.e. in (0, T), 

a(u,v) + (a()X2, divv) = G - v dx + g - g.vdF 
Ar 

(2.19) Vv E V, a.e. in (0, T), 

k=( txj, x j) + 

(--• 
, 1) 

j=1 

(2.20) + 
(ac() 

divu, x2-Y2) < 0 
V(yl,y'Y2) E K, a.e. in (0, T), 

(2.21) d(-, 0) = do a.e. in Q. 

(2.22) [X1, X2](-, 0) = [X1,0, X2,0] a.e. in Q. 
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An early result for Problem (P) is the following (see [5, Lemma 1]). 

Lemma 2.2. For any O, X2 E CO([0, T]; L2(Q)) satisfying 

(2.23) IX2(', t)] < c)c a.e. in Q , Vt E [0, T], 

there exists one and only one solution u E Co([0, T];V) of (2.19). Moreover 

(2.16) holds, and there is a constant C1, depending solely on cv, IalIILO(R)), c/C, 2, 
jIGHICO([O,T1;(L2(F))3), Iig~lCO([O,T];(L2(rA))3), V, A, and pL, such that 

(2.24) 1 divu(',t)llLO (Q) 0 C1 Vt E [0, T]. 

Then, our existence and uniqueness result reads as follows. 

Theorem 2.3. Under assumptions (2.7)-(2.12), and for a fulfilling (2.13) in the 

precise sense that 

(2.25) C2 := C0 - )cCacCCC1 
> 0, 

(2.26) (Pc(22c + 1)cacec)2 < C2(A + 2p/3), 

Problem (P) has one and only one solution. 

Remark 2.4. Note that, from (1.1) it turns out that the quantity 

co - Va"()X2 div u 

(coefficient of dt in (1.1)) represents the actual specific heat of the shape memory 
body. In this sense, (2.25) has to be regarded as a non degeneracy condition 
for the energy balance equation in (1.1). In the same spirit, (2.26) stands for a 

compatibility condition among the data. 

The forthcoming Sections 4 and 5 are devoted to the proof of Theorem 2.3. 

3. STATEMENT OF THE SCHEME AND MAIN RESULTS 

Now it is worth introducing our approximation of Problem (P). To this aim, let 
P be a partition of the time interval [0, T], namely 

(3.1) P := {0 = to < t < ... < tN-1 < tN = T}, 

with variable step 7i := ti - ti-1. No a priori constraints are imposed on the time 

steps, and 
7•:= 

maxl<i<N T7 denotes the diameter of the partition P. Let us set 

(3.2) FP 
-1 

F(-.,t) dt E L2(Ql), fi = f(.,) L2(Q), 

for i = 1,..., N, and 

(3.3) Gi := G(., ti) E (L2(Q))3, gi := g(., ti) C (L2(r ))3, 

for i = 0, 1,..., N. Note that, by virtue of (2.7)-(2.10), definitions (3.2)-(3.3) make 
sense. 

Moreover, we introduce two families of approximating initial data depending on 
P and fulfilling 

(3.4) 
{0Hop} 

E H1(Q), {[X1,OP,X2,0p]} 
C K. 
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Now, let uop E V be the related initial displacement (cf. (2.15)), namely the 
solution of the variational equality 

(3.5) 

a(uop,,v)+ (a(0op)X2,0•p, 

div v) Go - vdx+j 
g?o0.vdF 

VvE V. 
Jo Jra 

Then, the approximating problem can be stated as follows. 

Problem (Pp). Find the vectors {Oil}Yo E (HI(Q))N+I, {Ui}No E VN+1, 
{Xji} =o E (L2(Q))N+1, for j = 1, 2, fulfilling 

(3.6) 00 = o~p, 
UO = uoP, [X?,o ] = 1 - ,0X , X2,0oP, 

and such that the following equations and conditions hold for i = 1,..., N: 

(3.7) [XYl,X2] e K, 

(c OeiiLxi 
Xil 

, + h VOi- aVdx + r1) (G-i f)dF 

S(a(Oi) - Oia'(Oi))X divU 
- (a(i-1) - 

0i-1oa(Ei-1)),-X2 
divU'-1) + T i , 

(3.8) = (Fi,o') V E H1(I), 

(3.9) a(Ui,v) + (a(Oi)X , divv) 

-= jG.vdx+j g.vdrF Vv E V, 

k 

_j= T 
'yj 

- 
+ 

(3.10) + (a(Oi) div Ui-1,X2 -2) < 0 V [yi, y2] E K. 

By virtue of (3.5), (3.9) and Lemma 2.2, it is straightforward to check that the 
following estimate holds: 

(3.11) I divUillLo(Q) < Cl for i = 0, 1,..., N, 
where C1 is the same constant of relation (2.24). 

Let us stress that the previous scheme is fully implicit in both the energy and 
the momentum equations. Regarding Problem (Pp), we have 

Lemma 3.1. Under assumptions (2.7)-(2.10), (2.12), (2.25)-(2.26), and (3.4), for 
any partition P), Problem (Pp) has at least one solution. 

Proof. Thanks to (3.4), it suffices to show that, given a quadruple (Oi-1, X'-1, 

X-1, Ui-1) E HI(Q) x L2(Q) x L2(Q) x V, the scheme (3.7)-(3.10) has a solution 
(0i, X', 

X, Ui) E HI(Q) x L2(Q) x L2(Q) x V, for any value of the time step 
•i. 

To 
this aim, we apply the Schauder fixed point theorem. As a first step, replace Oi by 
O in (3.10) and denote by [X1, X2] =: [B1(0), B2(0)] the solution to the resulting 
elementary variational inequality. Next, by replacing in (3.9) the terms Oi and 

X2' with O and B2 (0), respectively, one may find the unique solution U E V to 
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the variational equality. Finally, denoting D(O, X2) := div U, it is straightforward 
to check that the estimate (2.24) holds for div U as well. We deal with (3.8) by 
replacing Xj, X2, divUi, and (a(Oi) - Oia'(Oi)) by X1, X2,divU, and (a(E) - 

Oa'(O)), respectively. The existence of a unique solution E =: E(E, X1, X2,div U) 
is then ensured by the Lax-Milgram lemma. Moreover, by testing (3.8) on E with 
the help of (2.6), (2.12), (2.24), and the elementary inequality (which will be used 
in the sequel of the paper without any explicit recall) ab < (6a2 + b2/6)/2 for all 
a, b E IR, 6 > 0, it is straightforward to choose a constant C3 which depends on 

ca, cIC, Pc, C1, IlfillL2(OQ), rn, h, IFillL2(a), T, L, and C2, such that the following 
estimate holds: 

(3.12) II12 + 7 IVE12 dx + -'l 
2 dF C3. 

Thus, by defining 

S(E) := E(8), B1 (), B2(O), D(l, B2(6))), 
it turns out that S maps L2(Q) into a compact and convex subset, since the 
estimate (3.12) is independent of E. In order to apply the Schauder fixed point 
theorem, it remains to show that S is continuous with respect to the topology 
of L2 (Q). Indeed, it suffices to prove the Lipschitz continuity of the operators 
B1, B2, D, and E. Regarding B1, B2, and D this property has already been proved 
in [5]. Then, we choose two quadruples (O, XI, X2, div U) and (9, X1, X2, div U). 
By making use of (2.6) and (2.12), one may easily find a positive constant 04, 
depending solely on L, Ic, cQ, cc , C1, C2, such that 

IIE(e, x1, x2, div U) - E(O, X1, X2, div U)12 

? C4(ll - 2 •+ 1X - 
2 12 + 112 -X211 + Ildiv U - divU112). 

Finally, we conclude for a constant C5 which depends only on data and fulfills 

IS() - s( )ll < c I) - Ei11 
for every O, e E L2 (Q), whence S is continuous and the assertion is proved. O 

We stress that the forthcoming results of the paper do not rely at all on the 
uniqueness of a discrete solution. Indeed, both the convergence result and the error 
estimate hold for any discrete solution as well. Nevertheless, in view of numerical 
implementation, we prefer to devise here an uniqueness result for Problem (Pp). 
Namely, by choosing a partition P fine enough, we also achieve the following. 

Lemma 3.2. Under assumptions (2.7)-(2.10), (2.12), (2.25)-(2.26), (3.4), and for 
any partition P with diameter 7 small enough, the solution to Problem (Pp) is 
unique. 

Proof. We just sketch this argument, since it is very close to other proofs which will 
be detailed in the sequel of the paper. Let us reason by contradiction assuming that, 
given a quadruple (Oi-1, X-, X1-, Ui-1), two solutions to (3.7)-(3.10) (at level 

i) exist. We denote the latter two solutions by (O, X1, X2, U) and (O, X1, x2, U), 
and set 

O=- O-O, X1= X1- X1, X =- X2 -X2, U i U= -U. 
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Next, we write relations (3.8) and (3.9) for both the solutions, take the difference 
and test the resulting equations on <p = O and v = U, respectively. Owing to 
(2.3)-(2.4), (2.6), (2.12), and (2.24)-(2.25), one easily obtains 

C2llll2 + ? h 
i+j 

I2 i dx ? Tir 12dr 
(3.13) 

_ 
2 

c•IC_ 
I|X211 1111 + 

2cCCoc• 
|divUII 11611, 

CV (A + 2p/3) IdivUII2 + v 
2Il v2 + 2 (divU2 V(divU ))3 

(3.14) ? < 2ca|X2~11 jl divUll + cac?c|lOl| II divVlU. 
Since relation (2.26) ensures that 

3 (A + 2p/3) OccacKc(2tc + 1) 111111 divUll - C2 lle + 3 div U 
4 3 

by taking the sum of inequalities (3.13)-(3.14) we easily infer that 

C2 2 CV (A + 2//3) | 
i 11 + U 

|l + || div U || 4 2 6 

_ 
29c2CaCIIX211 ) 11 + 2Ca2lX2|ll I divIUl 
C2 (A + 2pu/3) (3.15) < 118112 + IldivU112 + C611X2112 8 12 

where 

8(6 2CaC)2 3(__c_)2 
C6- c + 

C2 (A + 2p/3) 
As regards the variational inequality (3.10), arguing as above we infer that 

2 

'i HX3 ? Il j=? 19 C Ix1; 
j=1 

thus, it is straightforward to fix a positive constant, say C7, which depends on 
k, ?, oc, ca, and CI, and fulfills 

2 

(3.16) i llj112 i C72i j1 2. 
j=1 

Finally, looking back to (3.15) and choosing 

7i 7 < C2/(16C6C7), 

we conclude that 
C2 2 CV 
6 II + U2 IU < 0. 16 2 

Hence, ' = 0, U = 0 and, recalling (3.16), X1 = 2 = 0 as well. O 

By virtue of Lemma 3.1, we may fix some convenient notations. Given {Wi }NQo 
in the linear space W, set 

Wp(t) = Wp(t) := Wo for t < 0, 
wi- Wi-i 

wp(t) := W, Wp (t) := •i + (t - t1) 
(3.17) for t E (ti-l, ti], i = 1,..., N. 
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Moreover, we define an operator Tp related to the partition P. If 0b: (0, T] is a 

piecewise constant function on P, namely 0(t) = ~i for t e (ti-1, ti], i = 1,..., N, 
we set 

(3.18) 
(T9?4)(t) 

i-1 for tE (ti-1, ti], i = 1,..., N. 

Owing to (3.17) and (3.18) we may conveniently rewrite relations (3.8)-(3.10) as 

(at (coo + ((a(E) - 
Ea'(O))X2divU)), 

I) 

+hj V4p - Vp dx + rf (8p - 
fp)pdF= (Fp + LatX,,o) 

(3.19) Vp E H1(Q), a.e. in (0,T), 

a(Up,v) + a(P9)X2,P, divv =j Gp -v dx + gp - v dF 
n rn 

(3.20) V vE V, a.e. in (0, T), 

(Otj'-pj=1 

j,-- J) j=l 

(3.21) + 
(a(-p)TpdivUpX2,P 

-'72) 0 V[-y1, Y2] c K, a.e. in (0.T). 

The derivation of our error estimates requires additional regularity for the func- 
tion F. More precisely, we ask that 

(3.22) FE BV([0, T]; L2(Q)). 

From assumptions (2.8)-(2.10), (3.22), and definitions (3.2)-(3.3) we deduce the 
existence of a positive constant Cs such that 

IF - FP9IL1(o,T;L2(Q)) 
+ Ilf - fpllL1(O,T;L2(aQ)) 

(3.23) + IIG - GP|IL2(o,T;(L2(r))3) + Ig - gp|lL2(0,T;(L2(rg))3) < CG7, 
as easy calculations provide. Besides, we choose initial values such that 

2 

(3.24) I9do - 9o9Pl 
+ IIXj,o - Xj,op 

- 
< C9 T, 

j=1 

for some positive constant C9. Moreover, as a consequence of (3.24), taking the 
difference between (2.15) and (3.5) and choosing v = uo-uop, relations (2.3)-(2.4), 
(2.6), (2.24), and (2.14) ensure us that 

(3.25) Iluo - uoP Iv + II div uo - div 
uop9l I C10o 7, 

for a proper constant C10, depending on Oc, ca, C1, C9, A, p, and cv. 
Now, we state our error estimate. 

Theorem 3.3. Under assumptions (2.8)-(2.10), (2.25)-(2.26), (3.22) and (3.24), 
let (t, u, X1, X2), {Ei, Ui, 

,Xi, 
Xjz}N0 be solutions to Problem (P) and Problem 

(Pp), respectively, and let Ep, Ep, X1,p, X2,p, Up, be as in (3.17). Then, there 
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exists a positive constant C11, depending only on the data, such that, for every 
partition P, the following estimate holds: 

1 - p|IL2(0,T;L2(Q)) sup (j - Ep)(s)ds H( () 
tE[0,T]J0 HI(Q) 

2 

(3.26) + ?iu - Up IL2(0,T;V) + IXj - Xj,CO([O,T];L2(Q)) C1 T. 

j=1 

Remark 3.4. We point out that the a priori estimate (3.26) is optimal with respect 
to the order of convergence, since the backward Euler method is used to approxi- 
mate Problem (P). Moreover, our estimate is optimal with respect to the regularity 
of the phase variables X1, X2 in the sense of [14]. Since no a priori constraints 
between consecutive time steps are imposed in our analysis, (3.26) ensures the pos- 
sibility of implementing a step-by-step choice of time step sizes as shown in [14]. 
However, let us point out that C11 depends exponentially on T, as Gronwall's 
lemma is used in the proof of (3.26). 

Remark 3.5. Let us stress that the same error estimate still holds if we replace the 
terms IlJ-OpllL2(o,T;L2(Q)) and I|u-UpllL2(0,T;V) with ll--e PlL2(O,T;L2(Q)) 

and 

I1u 
- U 

IIL2(0,T;V), respectively (see the following Lemma 4.1). 

4. EXISTENCE 

In this section we prove the existence result of Theorem 2.3. This proof follows 
closely the argument devised in [5], so it will be just sketched, referring to that 
paper for the details. 

First of all, we establish some estimates for the approximating solutions which 
are independent of P. More precisely, one finds two constants T* and C12, which 
depend on 

laIILloo(•), 
C, Fg, CV, L, lc, ci, C1, C2, and T, such that, for every 

partition P with diameter T- < 7*, one has (see [5, Lemma 3.1 and eq. (4.27)]) 

IIOpIIH1(O,T;L2(Q)) + IIO)PILo(O,T;H1(Q)) + IIUPII H1(0,T;V) + I div UpILco(Q) 
2 

(4.1) + I divUp|IHI(O,T;HI(0)) + IIXj,P IH1(O,T;L2(Q)) n LO(Q) C12. 
j=1 

Indeed, relations (2.12) and (4.1) also ensure that 

(4.2) (a(E) - 
Ga'(E)), W,1(Q) is bounded independently of P. 

For the sake of convenience, we collect here some convergence results which will 
be useful in the sequel. 

Lemma 4.1. Let Op, Op, Up, Up, Xj,p, Xj,p for j - 1, 2 be defined as in 

(3.17) and fulfill (4.1). Moreover, let Tp be defined in (3.18). Then we have 

(4.3) 110p--OplIL2(Q) < CT• 
(4.4) lop - OPIIL)(O,T;L2(Q)) C0 , 

(4.5) IIUp - UpIL2(0,T;V) < CT, 

(4.6) IIUp - UP IL((0,T;V) < CV, 
(4.7) IldivUp - 

TpdivUpILn2(O,T;Hl(Q)) 
< C-T, 

(4.8) IIXj,p - Xj,IL2(Q) < CT for j = 1, 2. 



1442 U. STEFANELLI 

Proof. Note that the proofs of (4.3)-(4.6), and (4.8) follow easily from (4.1). Let 
us just check (4.7). We have that 

ltdiv Up - Tp div Up (1~2(0,T;HI(Q)) 
N ti 2 

(4.9) = j div Ui- -(ai(t)divUi + (1-ai(t))divUi-1) H1(Q)dt 

where ai(t) = (t - t-1)/Ti for t E [ti-, ti], i = 1,... ,N. Thus, due to (4.1), one 
has 

N 

IldivUp 
- Tpdiv UpIL2(0,T;HI(Q)) 

K < 
311div U' - divUi-12IIH() < CT2 

i= 1 

By taking the limit in equations (3.19)-(3.21) as the diameter of partitions tends 
to 0, one shows that Problem (P) has at least one solution. Indeed, the estimates 
(4.1)-(4.2) and well-known compactness results (see, for instance, [15, Cor. 4]) 
ensure that there exist 0, u, and 0 such that, possibly taking subsequences (not 
relabeled), 

8p - 
0 weakly star in H1(0, T; L2(2)) and 

(4.10) strongly in CO([O, T]; L2(t)), 
(4.11) Up - u weakly in HI(0,T; V), 

(4.12) div Up - divu strongly in C([O, T]; L2(F)), 

(4.13) (a(O) - Oa'(E)),p -+ weakly star in W1'O(Q), 
as the diameter 7 tends to 0 (clearly much more is true). Moreover, the previous 
convergences, along with Lemma 4.1, entail that [7, Sect. 5] 

(4.14) XI,p and X2,p are Cauchy sequences in CO([0, T]; L2()), 

and we obviously deduce from relation (2.12) that 

(4.15) a(O) - Oa'(O) - a(d) - )da'(O) strongly in Co([0, T]; L2(Q)). 

It remains to prove that d, X1, X2, and div u fulfill (2.18). To this aim, note that 
easy calculations yield 

at((a(e) - ea'(B)),X2divU) = at(a(e) - a'(E)),x2,-PdivUp 
+ Tp(a(-Ep) - -Opa'(-p)) atX2,p div Up 

+ Tp((ca(ep) - Op'(ep))X2,p) Ot(divUp). 

Referring to [5], we only have to deal with the first term in the right hand side 
above since the passage to the limit in the other two terms is ensured by the above 
listed convergences. In particular, let us prove the following useful lemma 

Lemma 4.2. Let E and F be normed linear spaces. Moreover, let g : E - F be 
a Lipschitz continuous function of Lipschitz constant Lg, {ui}'=o E EEN+, and let 

(g(u)), and up be defined as in (3.17). Then, 

(4.16) II (g(u))p 
- g(up) IL2(O,T;F) < 2/15 Lg TI7tuI1(2(0,T;E) 
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Proof. Fix t E (ti-l,ti] for i = 1,..., N, and let ai (t) = (t - ti-1)/Ti; we have 

(g(u)),(t) - 
g(UP(t))II, 

= Ili(t)g(ui) 
+ (1 - ai(t))g(ui-1) - 

g(ai(t)ui 
+ (1 - ai(t))ui-) IIF 

= ai(t)g(ui) + (1- a(t))g(ui-1) - ai(t)g(ai(t)ui + (1 - i(t))ui-1) 

- (1 - ai (t))g(ai(t)u' + (1- ai(t))E 

u-1)gIF < 2L, ai(t)(1 - ai(t)) [ui 
- 

ui-I[IE, 
since we have that both aiQ(t) and (1 - ai (t)) are nonnegative. Owing to the 
previous inequality and easy calculations, we have 

II (g( - (g(up)1 2( = j))(t) - g(up(t))j1 
2 

dt L2(0,T;F) F 

N 2 N 2 
<L -2 Eri ui - Uii-I 1 15L 2, T2IItUP11II2(oT;E), 
- 15L i= - i-1| 5 

2 (0,T;E) 
i=-1 

whence the assertion follows. O 

An application of the previous result (along with (2.12) and (4.1)) ensures that 

(a(o) - Oa'(O)), - (a(Ep) - Opa'(Ep)) --) 0 strongly in L2(Q), 
so that, owing to (2.12), (4.10), (4.13), and (4.15), we have that a = c(0) -da'(d), 
whence, recalling (4.13), one in particular infers that 

a(a (E) - Oa'(e)), 
--- 

at(a (V) - Oa'(O()) weakly in L2(Q). 

Then, owing to the latter convergence and arguing as in [5], one easily checks that 
relation (2.18) is fulfilled, and the proof is complete. 

5. UNIQUENESS 

The following proof follows closely the argument set forth in [3]. Therefore, we 
just suggest how to proceed, and omit most of the computations. We reason by 
contradiction. Let (01, , 

,1 ul) and 
(02,X, , U2) be two solutions to Problem 

(P) and set V:= X1 - 02, X1 :x11 2 1x X := U1 - U2. Let us 
take the difference between equation (2.18) written for (01, X, X1, ul) and the 
same equation for (02, X2, 

X2, 
u2), integrate the resulting relation on (0, t), choose 

'p = O(t), and integrate once more over (0, t). Owing to relations (2.6), (2.12), 
(2.14), (2.24), the H6lder inequality, and the mean value theorem, one infers that 

11 h 

jo 

ht2 t 7 

0t 

12C 2 -IIL2(0,t;L2( )) V (s)ds 
(L2())3+ 

2 
(s)dsL2 V (L2(a))o2 ) 

(5.1) K 

226i 
ccc I 

divui(s)fl 
II(s)IJIds + C13 j 

>3Ij(s)1l2ds, j=1 

where the constant 013 depends on Vc, cQ, L, C1, and C2. Next, we write rela- 
tion (2.20) for (01, X, 1, ul) (letting [Y1,7Y2] = [X2(t), x2(t)]) and (92, X, X2, 2) 
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(letting i[71, 2] [1i (t), x(t)], respectively). Taking the sum of the two inequali- 
ties, integrating in time, and owing to relations (2.24) and (2.14), one easily finds 
a proper constant C14, depending on Vc, ca, A, ,, ?, C1, and C2, such that 

k 2C2 
J-2 =•1 (t)= 2 

- 
122(0t L()) j=l 

(A + 
2p/3) divtl2 

2 

(5.2) + 

4 
L2+3(O,t;/L2() 

) 
+ d4 uE 

2 

;X(s)'12ds ) j=1 

Finally, we write (2.19) for both (01, x1, 1, u1) and (02,X X , U2), take the 
difference between the two resulting equalities, choose v = i, and integrate in 
time. Owing to (2.3)-(2.4), (2.17), and (2.14), one has 

cv 2v 11(A + 2yi/3) 2div-2 
2 (IIL2(o,t;V) 

+ IIV(divU)L2(0,t;(L2(Q))3) + 24 dv L2(0,t;L2 ()) 

(5.3) < 
cccCC 

cj |9(s)1 11 div U(s) ds + C15 J •2 (s)l2ds, 
where C15 properly depends on c,, ca, A, p . Now, we take the sum between (5.1), 
(5.2), and (5.3). Since (2.26) ensures that 

(Oc(2Lc + 1)cocc) jf (s) jJ div u(s) 1I ds 

3 2 (A + 
2p,/3) 

2 4 
C• •d2 

L2(0,t;L2(Q)) + 3 11div 
•U (o0,t;L2 

(Q)) 

one infers, for all t E (0, T), that 

C2 h t2 2 
2 

" 
L2(0,t;L2( ))+ V d(s) ds + 2 (s) ds 

?)(L2( )) L2(Q) 
CV 2 2 

(5.4) + 
2lulIl(0,t;v) 

+ 2lIV(diviiu)•L2(0,t;(L2(Q))3) 

(A + 2p/3) 
di12 

k 2 
+ 12 /3) div 

L 
u2(0,t;L2(Q)) + 2 

j=1 

t 2 

C16 
IIjj(~ 
Sj(s)l 2ds, 

j=l 

where C16 := 3 max{C13, C14, C15}. Hence, applying Gronwall's lemma (see, e.g., 
the version reported in [2, Thm. 1]), we conclude that the solution to Problem (P) 
is unique. 

6. ERROR ESTIMATES 

Henceforth, C stands for a positive constant depending eventually on data but 

independent of P. Of course, C may vary from line to line. Moreover, in the rest 
of this paper, where no confusion arises, we will drop the subscript P from the 
functions Op, p, X1,, X2,P,X1,P 2,, Up, Up, Fp, fp, Gp, and gp. 

Let us start by handling the variational inequalities (2.20) and (3.21). To 
this end, we refer the reader to [13, 14], where this analysis is developed in 
an abstract setting, and to [17, 18], where it has been applied. We choose 
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[Y1,Y2] = [Xl(t),X2(t)] in (2.20), [1,Y2] = [Xl(t),x2(t)] in (3.21) and sum the 
corresponding two inequalities. By easy calculations one infers that 

2 2 

(Ot(xj=l -X),(x-X j=l))? k1x,(X-X)) 
j=1 j=1 

+ (0 - 
O, 

Xl- xI + (a(0) divu - a(-E)T) divU,2- 
X2) 

_< 

0. 

Taking the integral over (0, t), we have 

(26 .) i(xj - Z)j(t), j=1 i=1 

for all t E (0, T), where 

2 

S=2 E IIj,o - Xj,op l2, 
j=l 

t 2 

I2(t) = k 
j (s),(-1) (s) ds, 
j=1 

13 (t)- in ( - O, X1 - Xi)(s) ds, 

I4(t) = - ((a(0) divu - a (E)divU)(s), (X2 -X2)(S) ds, 

15(t) -jt (a(o)(divU 
- Tp divU)(s), (2 -X2)(s))ds. 

Clearly, (3.24) ensures that 

(6.2) Il < CT72 

Our next aim is to control the residual quantity I2(t). Let t E (ti-1, ti], for some 
i 1,...,N. We have that 

S 
(atX3,Xj--X 

)(t) 

- 

i 
(j -J 

,ai(t)X 

? 
(1- 

ai(t))X-1- 
x) 

j=1 j=1 

2 2 2-1 
= 

(i(t)- 1)Ti 
j=1 

where, once again, ai(t) = (t - ti-1)/i (note that lai I 1). Then, one infers that 

2 

5 (aex, x - -)(t) 0 Vt (0, T), 
j=1 

and, consequently, 

(6.3) I2(t) < 0 Vt E (0, T). 
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Regarding I3(t) and I4(t), by virtue of (2.14), (4.3), and (4.8), one infers that 

(6.4) 13(t)< 11 - 2 
2e(o, 

+ c ( ftII(x - 
X)(S)lI2ds 52 IL2(Ot;L2(&I))+ iI 

+ (divU(a(a) - c (a)), 
X2- x2)I 

(s)ds 

(A + 2,q/3) C2 

-• 24 II divu - div UII2(ot;L2()) 
+ 

52II 
- 2(o,t;L2(Q)) - 24 

(6.5) + C 
t 

(2 - X2)(s)112ds + 72). 

Please note that the constant C2 in the calculations above is exactly the one 
appearing in (2.25). Moreover, let us stress that the choice of the quantity C2/52 
and (A + 2,p/3)/24, although it is not straightforward at the moment, is strictly 
related with assumptions (2.25) and (2.4), respectively, as will be clear in the sequel. 
Due to relations (2.14) and (4.7)-(4.8), it is possible to control I5(t) as follows: 

15(t) < (-2ca)2 t-ld 1 

- 
2 div U - Tp divUIL2(0,t;L2(Q)) + - II(X2 - X2)(S)2ds 

(6.6) C (jtfl(X2 x2)(s)I2ds + T2 

In order to get a control of the function .9, -Ep with respect to the norm of 

L2(O,T; L2(Q)) we consider the integral of (2.18) and (3.19) over (0, t) for t E 
(0, T), and obtain, respectively, 

(6.7) 

o (t() - do), 9+ h V(jV(s)ds)d- Vp dz 

+77a0 fl ( - f ) (s) ds) dlF 

= 
(F(s),Pl ) 

ds + L((Xi(t) 
- 

X1,o),) 

+ 
((Va'() 

- 
a(t)))2 

div u(t),9p) - 
((oa'((do)- a(o))X2,o 

divuoI,, 

Vtp E H1(Q), 
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co((e(t) 
+- 

ho,~),o( 
+ hj EV (s) ds) - Vpdx 

+ n J (9j - 7)(s) ds)WdrF= = tF(S), j) ds 

+ 
L((XI(t) 

- X,op), p) + ((Ea'(E) - a(E))X2divU(t), () 

- 
((opa'(dop) 

- 

a(Pop))X2,o divuop 
,) 

+ 

(•(tp),), 
(6.8) VP E Hl(c), 

where the residual term R(t) is defined by 

R(t) := 

~ot 

((C)(o- oa(E))X2 divU)p 

- (epa'(ep) - 
a(E8p))X2,pdivUp). 

Taking the difference between (6.7) and (6.8), choosing p = (6 - O)(t) and inte- 
grating over (0, t), one infers that 

-h v 2 
(0- O)(s)ds /( 

3 coH - OL2(0,t;L2(Q))?h 
- 

)()ds)2 \J (L2 (Q)3 

ft 2 13 

(6.9) + (2 - -)(s)ds 
= 

Zi(t), 
] S)O L2(&Q) i=6 

for all t E (0, T), where 

16(t) = J(co(do - dop) - L(Xi,o 
- X1,op), (P - 9)(s))ds, 

17(t) co 
(•o 

- e)(s), (E- o )(s))ds, 

Is(t) 
= 

(L(x1 
- Xi)(s), ( - 

O)(s))ds, 

19(t) = t ((F 
- F)(r)dr, (6 - 

O)(s)ds , 

Io(t) j j 
(f 

- f)(r)dr (6 - 
e)(s)dr ds, 

1 M(t) - t 
o((Po'(o) 

- 
a(do))X2,0 divuo 

-(o0pa'(0Po0) 
- 

a(oP))X2,o0pdivuop, 

( 
- -e)(s))ds, 
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I12(t) 
(= da'() 

- 
a(d))X2 

div u(s) - (a'(O) 
- 

a()) X2 div U(s), 

(6 - O)(s))ds, 

113(t) ( , 
- )())d. 

Our next aim is to control the right hand side of (6.9). To this end, due to (3.24) 
and (4.3), we handle 16(t), 17(t), and Is(t) as follows: 

SC 212(1 2 
I1(t) M 5- 11+ - OL2(I(o,t;L2(Q)) 

+ C(1 lo - ,op o 2 + IX1,0 X- 1,OPII + + 2) 

(6.10) ?5 - 
ell2(o,;L2(0,t; 

)) L2 

C(6.11) I 2(t) | - I2(t;L2 
2 

(6.11) L2(t) 

<_ --[ 
- OllLZ(o,t;L2(Q)) 

+ 
I 

(6.12) Is(t) 
<-? 

|I - eIL2(Ot;L2() + tI(X- )(s)II2ds + r2 

Next, we control 19(t) by virtue of (3.23) and (4.3) as 

C2 _ 19 M 52 L2 (0, t; L2 (Q) 
+ 

C( IF- 
_F|1T2 2 

L 
( F1(O,T;L2(Q)) + 7- 

(6.13) < -C2 E-IL2(O +L2()) + . 

52-L2(Ot;L2 
( 

Regarding Ilo(t), relation (3.23) and an integration by parts yield 

Iio(t) 

_ 

( 
o 

( 
f• 

- 

-f)(s)ds) (fot(- 
)(s)ds)dF 

+ rl ff(f 
- f)(s) (j -)(r)dr) dFds 

8t 2 

< ] ( - E)(s)ds + C Ilf - -|•L1(o,T;L2(O)) (4 + L2( o) 

(6.14) + 7J I1(f - f)(s)IIL2(a) J ( - o)(r)dT L2(a dS. 
It L2(Oa) 

In order to bound 111(t), we reason as follows: 

Ill(t) = 114(t) + I15(t) + 116(t), 
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where 

14(t) = 
(((o 

- a' (o) 0( ))- (opao'(Oop) 
- a 

a(op)))X2,odiv 
uo, 

(6 - )(s) )ds, 

I15(t) = - 
((opa'(op) 

- 
a(dop))(X2,o 

- 
X2,op) 

div uo, (P - O)(s))ds, 

16(t) = 
- 

oOp a'(( O) - 
a(op) )X2,OP( div uo - div uop), (9 - 

O)(s) ) ds. 

Hence, owing to (2.6), (2.14), (2.24), (3.11), (3.24)-(3.25), and (4.3), one obtains 

0t 
(6.15) < - 112 2(ot;L2()) C72 

? _ 
) 

52- -O 
L2(o,t;L2A () + c 

/15(t) < 202caCi f[X2,o - X2,0•pH 1(d- e)(s)1 ds 

(6.16) 2 119 - L2(o,t;L2()) + C72, 

I16(t) K< 20,cc c I div uo - div uop I( - 
O)(s)1l 

ds 
c 

0J 

(6.17)< 0C P1 - 
, 

|2(,t;L2() + CT2. 
(6.17) < 52- L 

- 12(Ot;i2(Q)) 

Thus, collecting (6.15)-(6.17), we have 

(6.18) 
/11(t) < 

| - 3|5L2(O,t;L2()) 
2 

The same analysis exploited for II1(t) applies to 112(t) as well. For instance, 
consider 

112(t) = 117(t) + 118(t) + 19(t), 

where 

117(t) ft (da'() 
- a(7)) - 

(Ea'(e) 
- a(6))X2 divu(s), ( - 8) (s))ds, 

Ils(t() (E ) a'()2 - 
(2) 

div u(s), (P - 6)(s))ds, 

19 () (( '(0) - a(0))X2( divu - div U)(s), (6 - O)(s) )ds. 
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By virtue of relations (2.6), (2.24), (2.14), and (4.3), one infers that 

117(t) ? 
?}cCaCICC1 II(9 - E))(s)I I(0 - 08)(s)11 ds 

= c}caCKC1i _E - 
I2L2(0,t;L2( )) 

+ 1( - O )(s)ll I(9 - O )(s)ll ds 

(6.19) 
+ - 

L2(O,t;L2()) C2, 

18s(t) 5 2-2,0cC1 II(x2 - X2)(S)II 11() - O)(s8)I dS 

? 52 - e 1L2(0,t;L2(n)) 

(6.20) + C II(2 - 2)(S)l12ds + 7 2 

(6.21) 1,9(t) 
_ 21c2c•A 

11( ( 
- 

d u - div U)(s)I I(s9 - O)(s)II ds. 

The reader should notice that the term 
Occ•ccClIJ 

- EIIL2(0,t;L2(,)) in (6.19) is to 
be handled by means of the non-degeneracy assumption (2.25). On the other hand, 
let us stress that the term I19(t) will be controlled jointly with the forthcoming 
term I20(t) by making a crucial use of (2.26). Moreover, according to (6.19)-(6.21), 
we conclude that 

112(t) (cCaCK1 C + C9 +- I L2(0,t;L2(()) 

+ 219cc, j II(div u - div U)(s)l i( - O)(s)|l ds 

(6.22) + C( I1(x2 -X2)(s)12ds + 7r2 

Finally, we deal with the residual term I13(t). It is straightforward to obtain that 

C21 1 53(t) L211- - OIIL 2(o,t;L( )) 

+ C ((ea'(e) - a(e)) X2div U) 

- (9pa'(8p) - a(ep))X2,p div Up'2() + 2), 

and, recalling (2.6), (2.12), and (2.24), an application of Lemma 4.2 with the choice 
E = (L2(q))3 and F = L2((Q) yields 

-C2 
e 2 2 

(6.23) 13(t) C11~29 - IL(0,t;1 ()) +? C-2. 
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Regarding the displacements, let us consider the difference between (2.19) and 
(3.20) and set v = (u - U)(t). One has 

a(u - U, u - 
U) + 

(a(tg)X2 - (O)X2, 
divu - divU) 

- 
(G-G).(u - U)dx + (g 

- 
g) (u - U) dF a.e. in (0, T). 

Now, we take the integral over (0, t) for t E (0, T). Since we have (2.3)-(2.4), it is 
straightforward to deduce that 

2 II(u - U)(t) II2(O,t;V) 
(A + 2u/3) 23 

(6.24) + 2 II(divu - divU)(t)ll 2(Ot;L2)) i(t), 
i=20 

where 

120(t) = - () - a(O))X2(s), (div u - div U)(s) ds, 

121(t) = - 
(()(X2 - X2)(s), (divu - div 

U)(s))ds, 

122 (t) = (G - G) - (u - U) dx ds, 

23 (t) = (g - ) . (u - U) dF ds. 
J J r 

The previous terms may be controlled with the help of (2.6), (2.14), (3.23), and 
(4.3) as follows: 

(6.25) I20(t) ? < ccccj I(6 - O)(s)I1 II(divu - div U)(s)II ds, 

(A + 2p/3) 121(t) 24 I divu - 
divUI122(0,t;L2(Q)) -- 24 

(6.26) + c( I(x-2 )())I2dS + T2• 

122 (t) 
-2(,t;V) 

+ C G - G2(T;(L2 

(6.27) < 
8U 

- U1 2 (,t;V) 
2 7 8 Iu- I 

L2(0,t;V) 
+( CT2 

123(t) 8C*2Iu-U II L2(O,t;(L2(FA))3) 
+ C I - gL2(OT;(L2(L))3) 

S u - UIIL2(ot;V) + g - 
gL2(O,T;(L2(FAr))3) 

(6.28) < cV u - UL2(O,t;V) 
2 

where the constant C. stands for the norm of the trace operator from V to 

(L2(rp))3. Once again we choose the arbitrary constants in the right hand side of 
relations (6.26)-(6.28) in order to fit the forthcoming analysis. 
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Next, we take the sum between (6.1), (6.9), and (6.24). At this point the role of 
assumption (2.26) becomes clear, since it and (4.3) ensure that 

(c(2c + I I)cck)I 
j t(9 - 

oE)(s)ll II( divu - 
divU)(s)I 

ds 

3C2 11 (A + 2p/3)12 3 4 - 4 IL2(o,t;L2()) 
+ 3 Ildivu - divU 

L2(o,t;L2(Q)) 

3C2 (A + 2p/3) 
3 4 2(o0,t;L2(-)) + 3 Ildiv u - div 

U||12(0,t;L2(Q)) + 
C-2. 

As a first consequence of the previous inequality we have that the sum 119 (t)+20(t) 
is controlled by the right hand side above (provided that the constant C is properly 
modified). 

Thus, by virtue of (2.25) and taking into account (6.2)-(6.6), (6.10)-(6.14), (6.18), 
(6.22)-(6.23), and (6.25)-(6.28), one obtains, for all t E (0, T), 

02 VE12 h(t 
2 

52 l- oIL2(0,t;L2()) - O)(s) ds (L2()) 
71 tCV + 4 (6 - O)(s) ds + - Ul 2(O,t;V) 

0L22 
(A + 2p/3) k 

2 

+ 
12 

div u - div U 2 (0,+t;L22)) +2 
j=1 

< C ([ f - f)(s)IIL2(| a ) (6 - O)(r) dr 
fJ0 L2(O+) 

j=1 

Finally, an application of Gronwall's lemma, along with relations (3.23) and (4.5), 
concludes the proof of Theorem 3.3. 

Remark 6.1. Let us briefly comment on the technical motivation for neglecting the 
term a(0)X2t ( div u) in (1.7). The latter motivation is connected with the earlier 
paper [3], in which Chemetov dealt with the uniqueness of a solution to the full 
three-dimensional Fremond model by reasoning by contradiction. The presence of 
the nonlinear term 

a('t)X2t ( div u) forced him to establish a local in time Gronwall 
type estimate. Thus, the uniqueness of a solution is proved in the time interval 

[0, T*) for a suitably small time T* < T and the argument is iterated to ensure 
uniqueness on the whole interval [0, T). Unfortunately, the latter local in time 
procedure is not adequate for the purpose of the error analysis, and we need to 
establish a Gronwall estimate up to the reference time T. In this respect (see also 

[3]), it turns out to be possible to prove such a global in time Gronwall estimate by 
neglecting the term a(O)X2&t( div u) in the full energy balance equation (1.7). 
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